您好、欢迎来到现金彩票网!
当前位置:星彩网 > 分布电容 >

使用FPGA器件实现电力载波发生器单元的总体设计

发布时间:2019-05-24 22:32 来源:未知 编辑:admin

  )通信作为电力系统特有的通信方式,广泛用于电力系统的调度通信、生产指挥、行政业务通信以及其他各种信息的传输。随着数字通信技术的发展,采用电力线上网、进行多媒体通信也具有宽阔的前景,电力线载波通信已经成为当今研究热点之一。

  线路调制单元是电力线载波机中关键部件之一。为了提高频带的利用率,线路调制一般采用单边带调制方式。使用数字化处理方法来实现线路的单边带调制,能够克服模拟电路的诸多缺陷。线路调制需要完成正交变换、滤波和频谱搬移等处理,运算量与采样率直接相关。高采样率导致了高的运算量,低成本DsP芯片无法满足运算需求。fpga可用于实现DSP运算处理单元,达到实时完成数字信号处理功能的目的,它为线路调制单元的数字化实现提供了一条性价比较高的途径。本文将介绍线路调制的FPGA实现,包括:线路调制单元数字化实现的总体设计,CIC和FIR滤波器的FPGA实现以及载波发生器单元的设计。

  电力线载波通信标准要求的信号频率为40~500kHz,频带宽度为4kHz。根据奈奎斯特定理,采样频率不能小于1MHz。采用数字化处理方式实现调制就是将信号的频谱搬移过程转化为数字域的数值计算过程。单边带信号可以表示为x(n)cos(wn)±x^(n)sin(wn),式中x(n)为基带信号,x^(n)为基带信号的正交信号,w为载波频率。由该式可知,完成单边带调制需要信号的正交变换、载波信号的产生、信号与载波的乘加等数值运算。希尔伯特变换是一种便于采用FPGA实现的正交变换方法,它可由系数具有奇对称特性的FIR滤波器实现。

  基带信号的频率较低,相应应以较低的采样率采样,而调制信号的频率较高,应以较高的采样率采样。因此在调制过程中必须进行采样率的提升,内插技术可以实现采样率的变换。调制单元调制部分的数字化实现的逻辑结构如图1所示。

  由图1可见,调制单元由正交变换、内插和调制三部分组成。完成正交变换的Hilbert滤波器为系数奇对称的FIR滤波器,延迟保持了正交信号与原始信号的时间同步。载波发生器,乘法器和加法器完成单边带调制。载波发生器由查表法实现,地址为13位,字长为16位,可以产生所需要的各种载波频率。内插完成采样率的提升,再用低通滤波器滤除无用频率分量。在设计中,通过内插将信号采样率由8kS/s提升至8.192MS/s,内插率I=1024。分两级完成:第一级内插率I=8,该级内插采用128阶系数偶对称FIR滤波器滤波。第二级内插率I=128,该级内插采用3级级联的CIC(积分梳状)滤波器。

  由上述方案可见,合理设计FIR、CIC滤波器和载波发生器电路是线路调制单元数字化实现的关键,线路调制单元和其他的组件进行数据交换,控制和接口电路在此不作一一赘述。

  线路调制解调需要用到FIR和CIC两种滤波器,这两种滤波器的共同特点是,具有线性相位,非常适合应用需求。但这两种滤波器对FPGA资源耗费较大,因此必须采用合理的结构减少FPGA资源的开销。

  设计CIC滤波器时,首先要考虑滤波器的增益,防止溢出。内插均选用三级级联的CIC滤波器,传递函数为H(z)=((1-z-128)/(1-z-1))3。由传递函数可以求出滤波器的增益为1283,增加的字长为log2(128)3=21位,输入信号宽度为13位,实现时必须预留21+13=34位防止溢出。将内插器与滤波器结合起来并对其实现如图2所示。

  程序设计采用VHDL语言,用QUARTUSII 3.0综合后CIC滤波器耗费资源350个LE(Logic Element)。根据Hogenaur的剪除理论在每一级输出时都可以剪除掉最后的若干位。通过信噪比的计算,可确定剪除位数,设计中积分部分每级可以剪除6位,分别取22、28和34位,梳状部分每级剪除1位,分别取14、15和16位,滤波器的输出为13位。采用剪除理论后,消耗的资源为240个LE,资源消耗减少了32%。

  FIR滤波器阶数高,如果按其级联结构实现时资源的利用率非常低,须加以改进。一种方法是提高时钟速度,重复利用乘法器和加法器。这种方法程序设计比较复杂,时钟提升也导致功耗增加,额外资源的消耗较多。另一种方法是利用FIR滤波器的分布式结构进行设计,这是一种高效的方法。信号x(n)通过N抽头,n位的FIR滤波器可以用下式表示,其中h(n)是滤波器系数,y为输出信号。

  由上式可看出,把输入信号每位的值xb作为地址,将滤波器系数h(n)的值和xb的每一位xb(n)乘积叠加,并将结果存入ROM中,就可以通过查表并移位相加而得到最终内积的结果。整个滤波器的实现无须乘法器,节省了FPGA片内资源。实验证明按照级联结构进行设计时,128阶FIR滤波器需要占用3000个LE以上,提高时钟重复利用乘法器后为1500LE,而采用分布式的结构资源消耗仅为900多个LE。希尔伯特滤波器由于阶数较低,消耗的资源更少。假定数据h(n)为B位,FIR的阶数为N,则需要的地址空间为2N,当N较大时实现会有困难。通过将128阶的滤波器分割为8块16阶的方法,有效减少了存储容量。该结构既节省资源又灵活。利用线性相位FIR滤波器的对称性,还可以节省一半存储量。

  电力线路中影响衰减特性的因素很多,这就要求电力线载波机线路调制单元的载波频率可变。NCO可以产生不同频率的正弦信号抽样值。如图3所示,预先存储一张正弦信号ROM表,表中放有8192个抽样点的值。假设所需的载波频率为300kHz,NCO从ROM表中每隔300个点取出一个值,即可得到频率为300kHz正弦信号的抽样值。在实现中正弦信号ROM表的是通过对频率为1Hz的正弦信号在一个周期内进行8192次等间隔采样得到的。由于频率分辨率为1kHz,所以根据需要载波频率的不同,NCO改变抽取点间的间隔,就能在一定范围内得到任何1kHz整数倍频率的正弦信号抽样值。

  正弦信号具有重复性,因此设计时只需存放四分之一个周期的值,即2048个抽样值。这样节约了大量的ROM空间和存储单元。NCO的流程如图4所示。

  正弦信号和余弦信号仅仅是相位上偏差了90°,因此每次从Ram中取正弦信号抽样值的时候,将地址指针延迟四分之一周期就能取出与之严格同步的余弦信号值。设计时NCO采用了双时钟结构,CLK为低频时钟,CLK1为高频时钟。在低频时钟内使用一个地址指针控制提取两路载波的地址,在高频时钟内根据地址依次提取正弦和余弦抽样值。低频时钟控制地址指针的变换,在时钟上升延到来时变更指针。CLK经过一个周期的时间内,CLK1经过6个周期:前三个周期空等待,等待地址指针m的刷新;而后的三个周期依次根据地址取出正弦余弦的抽样值,并作同步输出。

  采用本文中方案所设计的语音信号调制单元,通过一次变频的方式完成单边带调制,除了在体积和可靠性具有无可比拟的优势外,其他性能指标也有了很大的改进。通过实测,其主要性能指标如表1所示。

  满足设计的芯片有多种,例如,Atlera公司的Cyclone芯片EP1C12Q240C8、EP2C5Q208C8、EP1C12Q240C8等。从成本和实用角度考虑,在调制系统地设计中采用芯片EP1C6Q240C8,实现了完整的单边带线路调制单元,经过测试性能良好。仅用一片FPGA芯片,通过数字化的方式来实现线路调制,和以往的模拟实现方法相比,是一种技术的革新和进步。采用数字化的实现方法后,整机的体积减小、成本低,可靠性有了很大的提高。用FPGA实现线路调制是一种有效的方法,为电力线载波机增加了相当的市场竞争力。

  本课程以Crio9068为对象,介绍了如果适合NI的FPGA进行编程,涉及内容有软件安装,模拟量输入输出、数字量输入输出

  本课程以Crio9068为对象,介绍了如果适合NI的FPGA进行编程,涉及内容有软件安装,模拟量输入输出、数字量输入输出

  中国半导体行业协会副理事长于燮康在2019世界半导体大会上曾经向《每日经济新闻》记者透露一个数据,目....

  5月21日,美国传来消息,官员周一决定,将对华为的禁令延迟90天实施,直到8月中旬才会生效,理由是,....

  针对美国商务部工业和安全局(BIS)把华为列入“实体名单”,5月17日凌晨,华为旗下的芯片公司海思半....

  华为1991年从成立ASIC设计中心起,到2004年成立海思半导体,直至成为中国自主芯片设计的代表,....

  目前,紫光展锐已经与是德科技,使用春藤510和是德科技UXM 5G无线GHz频段下....

  一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、....

  2016年美国商务部制裁中国中兴公司,禁止美国公司供应芯片和软件给中兴,中兴当年缴纳了10亿美元罚款....

  近日,工信部、国资委印发《关于开展深入推进宽带网络提速降费、支撑经济高质量发展2019专项行动的通知....

  目前风电技术可分为恒速恒频控制方式和VSCF控制方式。VSCF风力发电机可提供更高的风能利用效率,故....

  该技术的关键是具有通道和腔室系统的微流控芯片。它通过每个腔室中的排水管吸收液体以一次性捕获癌细胞。

  今年以来,5G的发展如火如荼、呼之欲出,物联网的发展也正迎来一阵高潮。而NB-IoT以其“小而美(低....

  人工智能技术日益成熟,推动新一轮信息变革,在各级积极推动人工智能广泛应用各行业后,一个崭新的万物智能....

  由于晶体在剪脚和焊锡的时候容易产生机械应力和热应力,而焊锡温度过高和作用时间太长都会影响到晶体,容易....

  FPGA (Field Programmable Gate Array)即现场可编程门阵列。它是在P....

  贸易战最好不打,因为两败俱伤;但如果真打,中国会赢,这是很多人可能想不到的,特朗普自己可能都没想到。

  我们不得不承认此举必定会对企业造成短期的阵痛,但从长期来看,倒逼中国企业技术升级也会为国家芯片“造血....

  想来美国也是搞笑,堂堂一个大国,居然因为一家公司搞起了“国家紧急状态”。

  博通集成电路(上海)股份有限公司在上海证交所正式挂牌上市,上海市经济和信息化委员会副主任傅新华出席仪....

  不管是行政命令,还是美国商务部公布的实体清单,都是事实上可以随时禁止美国公司向华为销售产品,我们有理....

  在美国开始“封杀华为”后,引发全球股市震荡,华为的美股和港股核心供应商遭受不同程度的下跌,台股则成重....

  频率单位,频率单位通常分为KHZ与MHZ,而对于有源晶振和无源晶振来讲,32.768既存在KHZ的单....

  海思半导体是一家半导体公司,海思半导体有限公司成立于2004年10月,前身是创建于1991年的华为集....

  AiRiA展出自主设计的人工智能芯片QNPU原型 采用量化模型压缩处理技术

  近日,2019世界半导体大会在南京国际博览中心举行。这是一场汇聚集成电路行业精英的盛会。除了传统半导....

  近日,任正非在接受日媒采访时首度回应被禁事件,他表示:华为公司不会任由华盛顿摆布。“我们不会像中兴通....

  嗨, 在配置期间可以关闭双引脚(特别是INIT_B,PUDC_B)? 我认为我的设计驱动程序中的一些引脚处于低电平且FPG...

  喜 我需要vhdl中的代码,这使得fpga在dac上创建不同的信号...... 像xilinx和picoblaze的例子,但在vhdl(ise)...... 请停下来...

  在最新出版的《半导体学报》2019年第5期上,北京大学物理学院陈建军研究员介绍了半导体胶体量子点在片....

  我正在尝试测量spartan3(Spartan 3E入门套件)的静态功耗。 为此,我使用分流电阻和使能信号确保FPGA不执行应用程序。 ...

  我正在尝试设计一个斯巴达6 lx16 FT(G)256 fpga的电路板 1)通过JTAG头通过并行电缆/ jtag编程到非易失性存储器中。 ...

  嘉楠耘智在 2018 年发表布采用台积电 7 nm 工艺技术的 ASIC 芯片,应用在旗下的阿瓦隆 ....

  嗨,任何人都可以建议如何与FPGA接口SRAM,如果我必须采取任何预防措施,或任何拉上电阻我必须与数据和地址引脚连接。 ...

  继中兴之后,最近美国商务部把华为公司列入实体清单从而禁止华为购买美国公司芯片、软件,这件事已经闹得沸....

  想学XILINX FPGA ,大神 给介绍个视频 和板子 .跪求 .谢谢 还不知道怎么学习的话,快来跟我一起免费报名观看Mill...

  特斯拉一直在实现不可能——特斯拉自动驾驶开放日上,埃隆•马斯克和他的团队再一次走在了未来前面。

  您好: 我们在做图像处理的时候需要用到一款电平转换芯片, 如图,左边的信号是连接到FPGA上的,电压是2.5V,右边接的是...

  An Article on Transmission Zeros in Filter Design by Randall W. Rhea....

  晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)....

  美国商务部可能会在近期缩减针对华为的部分贸易限制,向华为提供为期90天的“临时通用执照”(Tempo....

  同时,华为宣布在美国的57家工厂全部撤离,在华为做出这个决定后,美国民众爆发游行发泄不满,他们中有很....

  受到美国禁令的影响,华为的增长预计会放缓,但影响是局部的,营收增长年率预计低于20%。

  LY4081A 5V输入双节串联自适应锂电池升压充电芯片的数据手册免费下载

  LY4081A是一款5V输入支持双节锂电池串联应用锂离子电池的升压充电管理IC. LY4081A集成....

  AD637是一个完整的高精度单片rms-to-dc转换器,可计算任何复杂波形的真实rms值。它的性能....

  国重实验室ADAPT课题组,联合中科驭数(北京)科技有限公司,在现场以视频和实物演示的形式,介绍了应....

  IC封装基板,又称IC载板,直接用于搭载芯片,不仅为芯片提供支撑、保护、散热作用,同时为芯片与PCB....

  随着多个品牌手机对无线充电技术的支持,无线充电已成为电源领域最热门的话题之一。

  这是本文的作者向苏老师自荐的一篇文章,想必是基于其亲身体会写得比较真切,故转发在此,分享给标题中的朋....

  到2023年,深圳建成具有国际竞争力的集成电路产业集群,产业整体销售收入突破2000亿元,设计业销售....

  美国颁布华为禁令,何庭波:我们曾经打造的备胎,,一夜之间全部‘转正’!

  近几年来,“人工智能”概念在中国非常火,产业速度发展非常迅猛。数据显示,中国扩展创新AI业务以增强重....

  据调查数据预测,滤波器的市场空间将从2016年的52.08亿美金快速成长至在2022年的163.11....

  中国制造业目前已取得了举世瞩目的成就,从落后挨打,到现在巨龙腾飞,中国制造人付出了巨大心血和努力。然....

  湖北兴力电子材料有限公司年产3万吨电子级氢氟酸项目开工仪式在兴发集团宜昌新材料产业园举行。该项目建成....

  近日,上海市人民政府官网发布消息称,为进一步提升集成电路领域科技创新能力,加快突破集成电路领域核心关....

  信息开关二极管专为高速开关应用而设计。 引线%哑光锡(锡) 合格回流温度:260°C 极小型SOD-523封装 适用于汽车和其他应用的S前缀,需要独特的现场和控制变更要求; AECQ101合格且PPAP能力 电路图、引脚图和封装图

  信息开关二极管专为高速开关应用而设计。 可提供无铅封装* 电路图、引脚图和封装图

  信息开关二极管设计用于超高速开关应用。该器件采用SC-70封装,专为低功耗表面贴装应用而设计。 可提供无铅封装 适用于汽车和其他应用的S前缀,需要独特的站点和控制变更要求; AECQ101合格且PPAP能力 电路图、引脚图和封装图

  信息小信号二极管 低正向压降 快速开关 非常小的薄型 最大剖面高度为0.43mm 尺寸为1.0 x 0.6mm

  信息 BAS16P2T5G开关二极管是我们广受欢迎的SOT-23三引线器件的衍生产品。它专为开关应用而设计,安装在SOD-923表面该封装非常适合低功率表面贴装应用,其中电路板空间非常宝贵。 极小的SOD-923封装

  BAS16 (Legacy Fairchild)开关二极管,85 V 200 mA

  信息采用SOT-563封装的双开关二极管。 引脚表面处理:100%无光泽锡(锡) 合格回流焊温度:260°C 超小型SOD-523封装 适用于汽车和其他应用的S前缀,需要独特的现场和控制变更要求; AECQ101合格且PPAP能力 电路图、引脚图和封装图

  信息开关二极管专为高速开关应用而设计。该器件采用SC-75表面贴装封装,非常适合自动插入。 低漏电流应用 中速开关时间 这些器件是无铅,无卤素/ BFR,符合RoHS标准

  信息开关二极管专为高速开关应用而设计。 S汽车及其他应用的前缀,需要独特的现场和控制变更要求; AECQ101合格且PPAP能力 电路图、引脚图和封装图

  信息开关二极管专为高速开关应用而设计。该器件采用SOT-23表面贴装封装,非常适合自动插入。 低漏电流应用 中速开关时间 8 mm卷带和卷盘 - 使用BAS116LT1订购7英寸/ 3,000单位卷轴 Pb - 免费套餐。 汽车和其他应用的S前缀,需要独特的站点和控制变更要求; AECQ101合格且PPAP能力 电路图、引脚图和封装图

  信息开关二极管专为高速开关应用而设计。该器件采用SOT-23表面贴装封装,非常适合自动插入。 无铅封装可用 电路图、引脚图和封装图

  信息 A5191HRT是一款单芯片CMOS调制解调器,适用于高速公路可寻址远程传感器(HART)现场仪表和主机。调制解调器和一些外部无源组件提供满足HART物理层要求所需的所有功能,包括调制,解调,接收滤波,载波检测和发送信号整形。 A5191HRT与SYM20C15引脚兼容。有关引脚与SYM20C15兼容性的详细信息,请参见引脚说明和功能描述部分。 A5191HRT使用每秒1200位的相位连续频移键控(FSK)。为了节省功率,接收电路在发送操作期间被禁用,反之亦然。这提供了HART通信中使用的半双工操作。 低功耗 Bell 202移位频率为1200 Hz和2200 Hz 单芯片,半 - 双工1200比特FSK调制解调器 发送信号波形整形 接收带通滤波器 满足HART物理层要求 CMOS兼容 电路图、引脚图和封装图...

  CAT25128 128-kb SPI串行CMOS EEPROM存储器

  信息 CAT25128是一个128 kb串行CMOS EEPROM器件,内部组织为16kx8位。它具有64字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()输入启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 输入可用于暂停与CAT25128设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。片上ECC(纠错码)使该器件适用于高可靠性应用。适用于新产品(Rev. E) ) 20 MHz SPI兼容 1.8 V至5.5 V操作 硬件和软件保护 低功耗CMOS技术 SPI模式(0,0和1,1) 工业和扩展温度范围 自定时写周期 64字节页写缓冲区 块写保护 - 保护1 / 4,1 / 2或全部EEPROM阵列 1,000,000编程/擦除周期 100年数据保留

  8引脚PDIP,SOIC,TSSOP和8焊盘TDFN,UDFN封装 此器件无铅,无卤素/ BFR,符合RoHS标准 具有永久写保护的附加标识页...

  CAT25256 256-kb SPI串行CMOS EEPROM存储器

  信息 CAT25256是一个256 kb串行CMOS EEPROM器件,内部组织为32kx8位。它具有64字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()输入启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。输入可用于暂停与CAT25256设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。片上ECC(纠错码)使该器件适用于高可靠性应用。适用于新产品(Rev. E) ) 20 MHz(5 V)SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0)和(1,1) ) 64字节页面写缓冲区 具有永久写保护的附加标识页(新产品) 自定时写周期 硬件和软件保护 100年数据保留 1,000,000编程/擦除周期 低功耗CMOS技术 块写保护

  - 保护1 / 4,1 / 2或整个EEPROM阵列 工业和扩展温度范围 8引脚PDIP,SOIC,TSSOP和8焊盘UDFN和TDFN封装 此器件无铅,无卤素/ BFR,符合RoHS标准...

  信息 CAT25040是一个4-kb SPI串行CMOS EEPROM器件,内部组织为512x8位。安森美半导体先进的CMOS技术大大降低了器件的功耗要求。它具有16字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 输入可用于暂停与CAT25040设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 20 MHz(5 V)SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0和1,1) 16字节页面写入缓冲区 自定时写入周期 硬件和软件保护 块写保护 - 保护1 / 4,1 / 2或整个EEPROM阵列 低功耗CMOS技术 1,000,000编程/擦除周期 100年数据保留 工业和扩展温度范围 PDIP,SOIC,TSSOP 8引脚和TDFN,UDFN 8焊盘封装 这些器件无铅,无卤素/ BFR,符合RoHS标准...

  信息 CAT25080 / 25160是8-kb / 16-kb串行CMOS EEPROM器件,内部组织为1024x8 / 2048x8位。它们具有32字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()输入启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 输入可用于暂停与CAT25080 / 25160设备的任何串行通信。这些器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 10 MHz SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0和1,1) 32字节页写缓冲区 自定时写周期 硬件和软件保护 块写保护 - 保护1 / 4,1 / 2或全部EEPROM阵列 低功耗CMOS技术 1,000,000个编程/擦除周期 100年数据保留 工业和扩展温度范围 符合RoHS标准的8引脚PDIP,SOIC,TSSOP和8焊盘TDFN,UDFN封装...

  信息 MC10 / 100EP32是一个集成的2分频器,具有差分CLK输入。 V 引脚是内部产生的电源,仅适用于该器件。对于单端输入条件,未使用的差分输入连接到V 作为开关参考电压。 V 也可以重新连接AC耦合输入。使用时,通过0.01μF电容去耦V 和V ,并限制电流源或吸收至0.5mA。不使用时,V 应保持开路。复位引脚是异步的,并在上升沿置位。上电时,内部触发器将达到随机状态;复位允许在系统中同步多个EP32。 100系列包含温度补偿。 350ps典型传播延迟 最大频率

  4 GHz典型 PECL模式工作范围:V = 3.0 V至5.5 V V = 0 V NECL模式工作范围:V = 0 V ,其中V = -3.0 V至-5.5 V 打开输入默认状态

http://emeklishop.net/fenbudianrong/369.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有